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The Hamiltonian of a Dirac particle in an arbitrary electromagnetic field is exactly diagonalized by a
unitary transformation generalizing previous work which was restricted to time-dependent fields. A very
simple form is found for the covariant Heisenberg equations which manifestly exhibits the classical
correspondence. These results are obtained in a manifestly covariant form using a previously proposed
proper-time quantum mechanics with subsequent specialization to a mass eigenstate resulting in the ~
usual theory. The simple theorem used for this diagonalization is also applied to other transformations
for helicity and the free-particle Hamiltonian. The source of difficulty in obtaining these results without

an intermediate use of proper-time theory is shown.

I. INTRODUCTION

Several interpretational aspects of the free Dirac
equation were clarified in the classic paper by
Foldy and Wouthuysen!® in which a unitary trans-
formation was found which diagonalized the Dirac
Hamiltonian with respect to positive and negative
energies. The application of this transformation
to the basic operators of position, momenta,
orbital angular momenta, and spin exhibited a
separation in the new representation into classical
and nonelassical portions. The classical terms
obeyed Heisenberg equations formally resembling
the equations of classical mechanics, while the
nonclassical terms exhibited a rapid oscillatory
motion about the classical values (zitlerbewegung).
When electromagnetic interactions were included,
the transformation could not be obtained in closed
form. Thus the classical separation could not be
effected and the Heisenberg equations were not
studied. Furthermore, the general approach was
noncovariant. Subsequent work by Eriksen? has
shown a closed form for the transformation when
the electromagnetic field is time-independent and
is free of a scalar potential. Chakrabarti’® has

studied a covariant diagonalization, but dealt only
with free particles. A general review of these
and associated problems can be found in the work
of de Vries.* '

This paper addresses three problems: First,
is there a manifestly covariant generalization of
the Foldy-Wouthuysen transformation? Second,
can this procedure be extended covariantly to
include arbitrary electromagnetic interactions in
closed form? Third, can a covariant form of the
Heisenberg equations be found which explicitly
shows the classical form even with an interaction
present? An affirmative answer to these questions
can be given in the context of a proper-time quan-
tum mechanics which as been previously proposed
by one of the authors.® Although we utilize the
proper-time approach to maintain covariance, the
results can be immediately specialized to the usual
theory by using mass eigenstates.

We find that the covariance appears mandatory
for the diagonalization in arbitrary fields. If one
uses the noncovariant Hamiltonian P°=8m + E-ﬁ
and performs the replacement P*—~ P —¢ A" one
encounters the difficulty pointed out by Sucher®
that the resulting square-root Klein-Gordon equa-
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tion does not admit the Lorentz group. Further-
more, it is well known that a separation of pos-
itive- and negative-energy states (P° diagonaliza-
tion) is not possible with time-dependent fields
and scalar potentials. We are able to bypass these
problems by diagonalizing the proper-time Ham-
iltonian H=y+(P—eA), which is a Lorentz invari-
ant for arbitrary fields. It should be mentioned
that the proper-time theory is more general in
that states do not have to be mass eigenstates.
After the calculations are performed, one may
restrict states to mass eigenstates, thus eliminat-
ing the proper-time variable and retrieving the
usual theory. For a proper study of the Heisen-
berg equations we need not only the manifest co-
variance but also a well-defined four-position
operator with a proper-time dynamics.

In the next section we will outline the main
features of the covariant algebraic proper-time
formulation of quantum mechanics which one of us
has previously proposed by extending the Poincaré
algebra to include a covariant position operator.
This larger mathematical framework enables us
to maintain covariance at each stage of the cal-
culation and to interpret the results from a more
group-theoretic point of view. In Sec. III we point
out a simple useful theorem and exemplify its
use in diagonalizing helicity. In Sec. IV we diag-
onalize the free-particle Hamiltonian generalizing
Foldy’s and Wouthuysen’s results to covariant
form. In Sec. V we diagonalize the Hamiltonian
for a particle in an external field, and in Sec. VI
we obtain and discuss equations of motion.

II. PROPER-TIME QUANTUM MECHANICS

In two previous papers® one of us has proposed
an extension of the Poincaré algebra (P*,M*") to a
larger algebra (X*, P*, M"*") to accommodate a
covariant position operator X*. The algebra was
defined by the commutation rules

[P*, X”]=z’g“”, (1a)
[x* x"]= ' (1b)
[P¥, P¥]=0, (1c)
[MFY, X M =i(ghVX¥-g XY, (1)
[M"”,P M=i(ghvPr-grtpY), (le)
[MHY. MP9] = —i( ghM Y04 gvopguo
_gVPMHO_gNOMVP), (1f)

where (1c), (le), and (If) define the Poincaré
algebra, and where the position operator is re-
quired to be a four-vector (1d) with mutually com-
muting components (1b) which is translated by the
physical four-momenta (1a).

Taken as the algebra of one-particle observ-
ables, it follows that the allowable states of a-
particle lie in the representation space of the
algebra. All representations were found by noting
that with the orbital angular momentum defined by

IPV=X¥PY-XVP+, (2a)
and the intrinsic spin defined by
SHY=MPY PV, (2v)

it followed that the representations of the algebra
are equivalent to the representations of the direct
product of the von Neumann algebra X¥, P” and
the homogeneous Lorentz algebra S*¥. As these
representations are known, one need only take the
direct product of the two representation spaces,
e.g. |F*) or |y*) as an eigenstate of P* or X* with
|6y b,, 5,00 as a representation of S*, where

b2 +b?-1=1§,,8"" , (3a)

i
bob, = _8' €pvpa Skvgee (3b)
define the Casimir operators b, and b,, while s is
the eigenvalue of spin and o is the third component.
The dynamical development of any operator @ is

given in the Heisenberg picture by
Q(,T)=e—h'HQei‘rH’ (4)

where 7 is the proper time and H is an invariant
Hamiltonian formed from the enveloping algebra
(i.e., function of X*, P*, and M*") and possibly
other operators supported by their representation
space. The proper time, 7, is a c-number scalar
which parameterizes the dynamics.

The unique spin-3 representations (Dirac theory)
are specified by eigenvalues of the Casimir op-
erators b,=%, b, =x3; thus we abbreviate

Ibo’ b1,5,0'>-|€(b1),0'>, (5)

where the sign of b, corresponds to the eigenvalue
of éy,. Thus a complete basis for Dirac theory
with four-momentum diagonal is |#¥ €(b,),0) and
with four-position diagonal is |y*, €(b,), o).

This representation space is much larger than
the one used in the usual Dirac theory in the fol-
lowing ways. Rewriting the four momenta #* in
terms of m= (K, ¥')*/?, €(k°), K the state is given
by |m,k, (%), €(zy5) €(0)). As all four momenta
are mathematically possible, all real and imag-
inary m are included. Thus it is a physical re-
quirement that one use a range of m which is
physically acceptable and so m is real and positive,
In the usual Dirac theory a single mass eigen-
state is chosen. There is a second respect in
which the space is larger as all three signs are
independently positive or negative giving an eight-
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component space. By making the physical re-
quirement that only those states are allowable
which are positive eigenstates of the operator

y+ P, one gets states which satisfy the Dirac equa-
tion. This separation into y*P>0 and y* P< 0 sub-
spaces is invariant under space and time inver-
sions and particle conjugation. From the point of
view of group theory, we are decomposing a rep-
resentation of the X, P, M algebra into irreducible
Poincaré representations using the invariants

m, €(P°, and y+P. Thus the usual Dirac equation
can be viewed as two simultaneous requirements:
first, that the physical state is a mass eigenstate
m | ) =my| ), and second, that it is a member of
the y+P>0 subspace; thus y*P|y) =m|y). By
dealing with the larger space and the proper-time
dynamics we can obtain covariant results which
later can be specialized to that subspace of the
Dirac theory.

1. THEOREM AND SIMPLE EXAMPLES

This article will heavily rely upon a very simple
‘theorem which is especially useful in Dirac theory
and which is suggested by the work of Foldy and
Wouthuysen: Let A and B be operators such that
A?=B%=1 and which anticommute, [A, B],=0, and
which are Hermitian, A=A" and B=B" (on the ¥°
Dirac metric). Then the unitary transformation
U=e%43 ig by definition

e°£“’=1 +0AB- % 6%- 51—‘ PAB ++ -
or (6)
e®48=co0s6 + AB sind ,
Also it will be noted that
eOABp,-6AB_ 2648 )
which proves the theorem that
e®4BBe~%48= B cos20 + A sin26 . (8)

Thus the unitary transformation ¢4 rotates both

%48 =cog6 + AB sinb

- -\/.127{(1”33/13)“2 +<P° + 5o

(Plz +P22)

EXACT DIAGONALIZATION OF THE DIRAC HAMILTONIAN...

172 ) cs(l_Ps/P)llz}

2423

A and B in the space of the two. By choosing '
6=7/4 we get A~-B and B~A. The utility of this
transformation is that it takes one from the basis
where B is diagonal to the basis where A is diag-
onal. In particular if B|B)=8|8) then e®42|8)
=|B )’ such that A|B)’=B|8)’. This may be seen
from -

@OABRe=0ABBAB| g) 2 4,048 | gy = g 048] g)
9

We first exemplify the theorem by diagonalizing
the helicity. Define w=2(8-B/|P|) and o, =28,
so that both operators have the spectrum 1. Then
we would like to find the unitary transformation
UoU~'=w, where U is in the form e'®%, Here we
can apply the theorem with

A=(Po, +B0,)/ (P2 + B2)Y? (10a)
and

B=g,, (10b)
and rotating B in the AB space,

e®42Be~%48=B cos20 + A sin26 . (11) -

We require that this result be equal to w. One
easily verifies that [4, B], =0 and A?=1=5%, and
that A and B are Hermitian. Thus we get

-

040826 + [(Plo-1 +P20-2)/(P12 + P22)1/2] sin26 =_CI}'_‘P_:T’ )

(12)
Thus
P,
=5
cos20 2 (13a)
and
2 23172
sinzg= B+ BT (13b)

3

P

which are consistent and which determine 8 to be
1cos™1(B,/P). Also

which gives the explicit form of the transforma-
tion.

As another application we consider the trans-
formation iy, to v° both of which satisfy the neces-
sary criterion. The transformation is U=¢®Y%%
and thus

(14)
[

O (iy,)e OV s =4y, cos20 +1°sin26,  (15)
in which we set 6 =7/4 to get Uiy, UT=y°. U may
be written

ovoiy - L o; 16

e =77 (1+%ys). (16)
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IV. FREE PARTICLE

The proper-time dynamics for the Dirac parti-
cle in the Heisenberg picture for any operator

Qis Qr)=e™1"4Qe'™¥ or dQ/dT =i[Q, H], where
H =yuP". This gives the Heisenberg equations
X¥=yb, (172)
Pr=0, (17b)
yh=48""p,, (17¢)
yF=2iy*H-2{P", (17d)
BHV= gk pYeyvph, (17e)
LEv=of pY VPt (17¢)
The »* equation is solvable:
d‘%r( -%) 21 ()’“—%)H, ‘ (18)
thus giving
= 24 (o) B Jems, (19)

clearly exhibiting the classical four-velocity and
zitterbewegung parts. The operator H™! means
(1/m?)y+ P, where m®=FE, P*. Inserting y*(r) into
the equation one easily finds the solution

Pt
X“(T)-X“(0)+ —'r+(v“(0)———>(e2”” 1) — ZzH ,

(20)
which again shows the separate classical motion
in covariant form. This may also be written

XHr)=xH0) + 2 7+ [HO)-H0)] 5oz (21)

ZH

This solution along with P#(r)=P*(0) solves the L*"
equation as '

) = 1(0) + TV (), Y
where

THD) [ HOP Py O] (1) 5 (29)
and

$¥(r) =9 (0)-T+r) (24)

Thus one sees that M* ¥(7)=LFY(1) + S* (1) =M*Y(0),
so that the total angular momentum is conserved.
One notices that only the “classical” portions of
L*Y and $#V are separately conserved.

In view of the preceding equations one could
define new “classical-like” operators by subtract-
ing out the zitterbewegung operators from both
sides of the equation to get “mean” operators
X, Ln, and S,, the latter two of which are sep-

arately conserved. But this method would not be
readily extendable to an interacting particle where
the exact solutions could not be found.

Foldy and Wouthuysen approached this problem
noncovariantly by seeking a transformation which
diagonalized the Hamiltonian P° and led to mean
3-vector operators X !, which exhibited classical
behavior. We can accompligh this covariantly by
diagonalizing the Hamiltonian H =7+ P and using
the above theorem to first transform the initial
state, |#, iy,, o) to |P*, iy, w°) by the helicity
transformation of the last section. We then diag-
onalize y+P using the theorem with A =iy, and B
=y P/m giving a state | ¥, e(y* P), w®). The op-
erator B is defined on y+P eigenstate and thus as
an integral operator on configuration space. Thus
from the theorem

UHUT = g* 81707 P/m),y_Pe—‘ews(y * P/m)

=y+ P cos26 +iymsin20, (25)
in which we choose 6=7/4 to get
UHU =iy,m, (26)
with
-1 ; ﬁ) »
U= <1+ws — ) , (27

This transformation is the covariant generaliza-
tion of the Foldy-Wouthuysen transformation. We
can ask for the form which the basis of the algebra
takes under the transformation U and one finds

pPi=pF, (28a)
=y ( -L>— , (28b)
m

.5 .
7’75—_ 7 ’ (28(:)

meoyny b 7'P><ﬁ_ . Pj_)
XP=X"+ 2(175 (&P ), (284)
L'FV=X"PY- X' P+ (28e)
SHV=dilyMyM—yym), : (281)
(P =iyym. (28g)

Since the transformation e{™/9 7 * P/m yag

unitary, all commutation rules are the same for
the transformed algebra and in particular for

their time development, i.e., the Heisenberg equa-
tions of motion. However, as the Hamiltonian is
in diagonal form, one sees that the covariant
position operator splits naturally into two parts,
the first of which obeys classical-like equations
and is the covariant generalization of the mean
position operator of Foldy. One sees that it is
defined in the old representation as X5, =U xry




so that X'=UU'X" UUT=X" in the new representa-
tion. ‘It is straightforward to check that the orbital
angular momentum tensor defined with X%, i.e.,
LEV=Xh P'-X? P! is a conserved quantity. Con-
sequently, the mean tensor SEV=MHV-LLY is
conserved. The Heisenberg equations in the new
representation are

P't=0, (29a)
. . PH y-P P!
o = i -——— —
).{ s + ¥ . (29b)
LMY=k pr_nv pi (29¢)
. pt
=2y, yum_y.P_>, (26d)
m
Srbus —yHPY 4 WV PE (29e)

V. PARTICLE IN AN EXTERNAL FIELD

For the case of a particle interacting with an
external field, P* is replaced by P -eA*(x)=D¥
and the Hamiltonian is given by H=y-D. We wish
to diagonalize this Hamiltonian by using the same
theorem, that is, find the transformation iy;~vy-D.
One recalls that in the treatment of Foldy and Wou-
thuysen y:D was diagonalized by an infinite se-
quence of transformations. Each of these trans-
formations was not only very complicated, but
could-only be determined after an evaluation of
off -diagonal terms in the preceding order. Thus
each approximation became rapidly more compli-
cated to the extent that only a few of the lower-
-order off-diagonal terms could be eliminated. We
will now show that a single transformation is suf-
ficient to give exact diagonalization.

The operators iy, and v+ D anticommute and both
are Hermitian; however,

(y+DY=D,D* —eS°°F
= —8,0% +e24,A% = 2ieA%, —eS*®F,;,

(30)

which is not unity. In order to invoke the theorem
we must use an operator whose square is unity.
We accomplished this in the free case by using the
operator y+P/m=v+P/(P,P*)"** instead of y*P.
Here we use the same approach and use the theo-
rem with A =éy,, and B =7y +D/M where M is the
mass operator in the presence of an interaction,
i.e., M=[{y-DY]*®. This operator is well defined
(and diagonal) when acting on the eigenstates of
v+D and has eigenvalues which are the magnitude
of the eigenvalues of y D, and thus the eigenvalues
of ¥ +D/M are £1 as required by the theorem. Fur-
thermore, it follows that y+D and M~! commute.
We assume that the state of the particle has no
massless component and thus v+ D does not have a
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null eigenvalue. Thus M~! for this case will be
well defined. o :

Thus we subject the algebra to the unitary trans-
formation

U= exp(8iysy «DM™Y). » (31)
For the Hamiltonian we get

H’=U‘)"DU_1 (323.)
or

H'=v+Dcos26 +iy;Msin26 , (32b)
which, with 8=7/4, gives

1 ,

U=Tz-(1+l')’5‘)"DM-l) (33)
and

H'={yM, (34)

where M is the mass operator.

Although we have formally diagonalized the
Hamiltonian, a problem remains which was not
present in the free-particle case where, with
H =1iy;m, the operator m is defined on the mass
eigenstates by m= [ d*e k|k) (k|, where the eigen-
value spectrum k&* and the eigenstates Ik) or equiv-
alently (y|%) are exactly known. Thus the trans-
formation can be exactly executed on the algebra
as the commutators of m with the algebra are
known. However, for the interacting case with
H|h)=h|R) the exact solutions, {y|k}, are only
known explicitly for those few cases where the
Dirac equation is exactly solvable. Consequently
the operator M, although still well defined, is not
defined in the practical sense unless the problem
is exactly solvable, i.e., unless the functions
(y| ) are known.

One may use the procedure of Feynman’ to de-
fine the square root of an operator @ which is the
sum of two noncommuting operators:

Q=A+\B, (35)
Q"”2=1r'”2f e Wyl gy (362)
[s]
Qr=(@2/2) [ (1-e=®)u"du, (36b)
0
with

1
e-(A+B)u=e-Au_)\uf e-Auspe-Au(1-8) 4o .,
0

37

One can show that this expansion is equivalent to a
binomial expansion plus correction terms which
arise from the noncommutativity of A and B. With
A=-38,% and B as the rest of (y-D)?, one sees
that the noncommutative terms are of the form
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B,PH)2 — (B, + R)(P"+R*)]'?, where R is the
momentum component of the A* field. Such terms
are very small if the field does not rapidly vary
over distances of the order of the Compton wave-
length of the particle. Thus for such fields one
can use the binomial expansion to a good approxi-
mation. In the transformed representation with

M=(m*+B), (38a)
B=e?4,A% -2ieA%, -eS*®F,q, (38b)
one gets
H=iy,M
y RSP S S
~175<m+2mQ+8m3Q + > ‘ (39)

Using either the exact Feynman expansion or the
approximate binomial expansion for M and M ™!
enables one to execute the transformation on the
observables obtaining results in a series form.

In conclusion, we have obtained the exact trans-
formation in one step, but unless the functions
{y|k) are exactly known one is forced to resort to
a series expansion to find the transformed oper -
ators. Consequently, the Heisenberg equations
and the separation into classical and nonclassieal
terms do not follow from this generalized Foldy -
Wouthuysen transformation.

VI. HEISENBERG EQUATIONS

The proper-time Heisenberg equations for an
operator @ are given by

Q(7)=i[Q,H]. (40)

In the general case of intéractions, one obtains

X =y, (41a)
DF=eFtVX ,, (41b)
IH =2iy*H — 2D* , (41e)

As already po'inted out, these equations do not
show an obvious separation into classical and non-
classical portions. In the H =¢y,M basis the trans-
formed variables do not even have closed forms.
It is easy to check that the mean variables do not
obey equations of a closed form. We would like to
have a closed form for the dynamical equations
which exhibits the classical behavior in an obvious
way.

Here the difficulty comes from the series form
of M which must be used in obtaining the trans-
formed algebra and also in the series form of H in
the H =iy M representation. However, the classi-
cal equations may easily be cast into many differ-
ent forms, so perhaps the difficulty lies in trying
to obtain the quantum-mechanical equation in the

form
X” =m0_1D"é] 5 (42)
l-eF” Xc“,. (43)

As the mass operator which replaces m, does not
generally commute with the other observables, one
is tempted to look for other orderings of the mass
operator in the dynamical equations. One easily
checks that for an observable @ we get

[H,Q].=1[Q,H*], (44)

which is suggested by the usual antisymmetrization’
used in going to quantum mechanics. The useful-
ness of (44) is because H is the mass operator
(apart from a sign) and the commutator [@,H?] is
both closed and classical in appearance as can be
seen from the following equations which hold in

any representation:

[H,X*],=2D", (45a)
[H,D*], =e(F* Dy + DaF") + €S FBH | (45b)

[H,L*'], =X'FY - F*X" | (45¢)

[H, "], =2eF*y,, (45d)

[H, 8], =20 (FHS™ - F'8*) (45€)
where

F*=[H,D"],. (45f)

The first three of these may be compared to the
classical equations rewritten in the form

[mO: cl} _2Dcl ’ (463.)
[mO:D 11+ =e(F* Dy + Do FH) (46b)
[mq, L%} Y1, = XK FY - F'XH . (46¢)

Consequently we suggest that the form [H,Q], is
important and should be used to obtain the classi-
cal analogs. Equations (453)- (45f) become more
transparent in the Foldy representation where

H =1iy,M and for a Dirac particle H=M when eval-
uated between Dirac states. The nonclassical
contributions to @ for a general operator can be
obtained by solving the [H,Q], for Q.

VII. DISCUSSION

We have shown that the Dirac equation in the
transformed representation is iy, M|¢) = m0|¢) when
|¢) is a mass eigenstate. This equation is equiva-
lent to the two equations

ivslo) = [9) (47)

and
MIg) = mely) , (48a)

or




MEY) =mg|y) (48b)

which will be recognized as the equations proposed
by Feynman and Gell-Mann.® What was not pointed
out was the unitary equivalence to the Dirac theory
and the fact that all operators and states must be
subjected to the transformation. In particular it
follows that the operator 1 —iy, used to project out
the electron neutrino states becomes 1+ (y:p/M)
in the new representation, and thus their argument
for the form of the weak interaction is not clear.
In fact these equations are space inversion-invari-
ant as the inversion operator is also transformed
into the new representation and as all commutation
rules are invariant,

The difficulty in transforming the Dirac Hamil-
tonian in the usual form i (3/87)§ =P° is due to the
asymmetrical form which singles out the zeroth

_component.”**® Thug for time-dependent fields
in the interacting case one must transform i (3/37)
as shown in Egs. (31) and (32) of Ref. 1. For the
case of static fields with A°=0, however, one can
show that the remaining series of diagonal terms
is in fact binomial expansion of P =[(P-eA)?
+m?|*/2, As the proper-time approach places all
X* dependence on the same footing, one is able to
achieve exact diagonalization even for time-depen-
dent fields.

We have shown that the Dirac and the Feynman—
Gell-Mann equations are unitarily equivalent by a
covariant generalization of the Foldy -Wouthuysen

" transformation. Recently, Biedenharn, Han, and
van Dam® have proposed an alternative to the
Dirac equation which has been shown to be uni-
tarily equivalent to the Dirac equation by de Vries
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and van Zanten.!® The main feature of their equa-~
tion is that it is linear in the momenta but with a
space-time-dependent metric. This follows from

Yy~ U U DY
— Lpl*,ylozpl , . (49)
where the new metric y'® is space-time -dependent.
This is in contrast to the space-time independence
of our metric, as the transformation U which we

use is unitary with respect to 7° {(i.e., actually
pseudounitary); thus
YRV~ U Y

-y UTYUY

— Y (50)
Their work differs from ours in that a different
set of simultaneous observables is diagonalized.
In fact, it is obvious that the Dirac equation may
be cast into an infinite number of different forms
by means of the infinite set of unitary transforma-
tions available. The new forms are useful only if
other basic observables are diagonalized by the
transformation or if the dynamical equations as-
sume a more useful or physically interpretable
form. In particular the Hamiltonian and various

complete commuting sets of operators are obvious-
ly useful.
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